Algebraic Geometry Lecture 20 - Projective Recappery

Lee Butler

Projective Space

For an algebraically closed field k recall that affine n-space is

$$
\mathbb{A}^{n}=\left\{\left(a_{1}, \ldots, a_{n}\right) \mid a_{i} \in k, 1 \leqslant i \leqslant n\right\}
$$

Now consider an equivalence relation \sim on $\mathbb{A}^{n+1} \backslash\{0\}$ given by $\left(a_{0}, \ldots, a_{n}\right) \sim\left(b_{0}, \ldots, b_{n}\right) \Leftrightarrow$ there exists $\lambda \in k^{\times}$such that $a_{i}=\lambda b_{i}$ for $0 \leqslant i \leqslant n$.

The space $\left(\mathbb{A}^{n+1} \backslash\{0\}\right) / \sim$ is called n-dimensional projective space, \mathbb{P}^{n}. So

$$
\mathbb{P}^{n}=\left\{\left[a_{0}, \ldots, a_{n}\right] \mid a_{i} \in k, 0 \leqslant i \leqslant n\right\}
$$

where the a_{i} aren't all zero, and each 'point' $\left[a_{0}, \ldots, a_{n}\right]$ is really an equivalence class under \sim.

Projective Varieties

We defined an affine algebraic set U as the set of points in \mathbb{A}^{n} that vanished on an ideal $J \subset k[X]$. For example, over \mathbb{C},

$$
\begin{aligned}
V\left(\left(x^{2}-y\right)\right) & =\left\{(x, y) \in \mathbb{C}^{2} \mid x^{2}-y=0\right\} \\
& =\left\{\left(x, x^{2}\right) \mid x \in \mathbb{C}\right\} \\
& =\left\{\left(a+b i, a^{2}-b^{2}+2 a b i\right) \mid a, b \in \mathbb{R}\right\}
\end{aligned}
$$

In \mathbb{P}^{n} this doesn't necessarily make sense. For example, $x^{2}-y$ is zero for $[x, y]=$ $[1,1] \in \mathbb{P}^{1}$. But in \mathbb{P}^{1} we have $[1,1]=[2,2]$, and $2^{2}-2=2 \neq 0$. So instead we consider homogeneous polynomials. These satisfy

$$
f\left(\lambda x_{0}, \ldots, \lambda x_{n}\right)=\lambda^{d} f\left(x_{0}, \ldots, x_{n}\right)
$$

for any $\lambda \in k$ and some $d \in \mathbb{Z}, d \geqslant 0$, where d is called the degree of the polynomial. Homogeneous polynomials are just those polynomials, all of whose monomials have the same total degree - which coincides with the degree just defined. For example

$$
X^{4}-7 X^{2} Y^{2}+X Y^{3}-19 Y^{4}
$$

is a homogeneous polynomial of degree 4 .
So if we let $S \subset k[X]$ be a set of homogeneous polynomials then, utterly analogous to the affine case, we define

$$
V(S)=\left\{P \in \mathbb{P}^{n} \mid f(P)=0 \text { for all } f \in S\right\}
$$

Then a projective algebraic set is a subset $U \subseteq \mathbb{P}^{n}$ that can be written $U=V(S)$ for some set of homogeneous polynomials $S \subset k[X]$. We also define the ideal of a set $U \subset \mathbb{P}^{n}$ as

$$
I(U)=\{f \in k[X] \mid f \text { homogeneous, } f(P)=0 \text { for all } P \in U\}
$$

The ideal is called a homogeneous ideal since it only contains homogeneous polynomials. A projective variety is then just an irreducible projective algebraic set. Equivalently it's a projective algebraic set whose homogeneous ideal is prime.

Functions

Given a projective variety we want to know about interesting functions on it. Recall that a function $f: U \rightarrow k$ was called regular in the affine case if there was a polynomial $F(x) \in k[x]$ such that $f(x)=F(x)$ for every $x \in U$. This is rather pointless in the projective case. Suppose we have a regular function f on a projective variety U and that it isn't everywhere zero. So

$$
f(P)=\alpha \neq 0
$$

at some $P \in U$. Then

$$
f(\lambda P)=\lambda^{d} f(P)=\lambda^{d} \alpha
$$

for any $\lambda \in k$. Clearly, then, $d=0$, and so f has degree zero, i.e. it's a constant function. So the only 'regular' functions are constant ones, thus using last weeks notation, $\mathcal{O}(U)=k$.

We may still define the coordinate ring on U as

$$
k[U]=k[X] / I(U)
$$

where, as usual, $k[X]$ is the set of homogeneous polynomials. The fact that $\mathcal{O}(U) \not \approx$ $k[U]$ is a consequence of projective varieties having more intrinsic structure than their affine counterparts ${ }^{1}$.

This is still an integral domain so we take the function field on U to be the field of fractions of $k[U]$, however we have to add the proviso that the numerator and denominator in our rational functions have the same degree to ensure that $f(\lambda P) /$ $g(\lambda P)=f(P) / g(P)$. So

$$
k(U)=\{f / g \mid f, g \in k[X], \text { homogeneous of same degree, } g \in I(U)\} / \sim
$$

where \sim is the expected equivalence relation for a field of fractions, that is

$$
\frac{f_{1}}{g_{1}} \sim \frac{f_{2}}{g_{2}} \quad \Leftrightarrow \quad f_{1} g_{2}-f_{2} g_{1} \in I(U)
$$

We then define the dimension of a projective variety U as

$$
\operatorname{dim} U:=\operatorname{trdeg}_{k} k(U)
$$

E.g.. Consider $U=\{X-Y=0\} \subset \mathbb{P}^{1}$. Then

$$
\begin{aligned}
\mathbb{C}[U] & =\mathbb{C}[X, Y] /(X-Y) \\
& \cong \mathbb{C}[X]
\end{aligned}
$$

Hence $\mathbb{C}(U) \cong \mathbb{C}(X)$, which has transcendence degree 1 over \mathbb{C}.

[^0]
Zariski Topology

A topology T on a set X is a collection of subsets of X such that:
(1) $\emptyset, X \in T$;
(2) if $A_{1}, A_{2}, \ldots \in T$ then $\bigcup A_{i} \in T$;
(3) if $A, B \in T$ then $A \cap B \in T$.

The subsets of X in T are called the open sets of X, and their complements are called the closed sets of X.

The Zariski topology is a topology on $\mathbb{A}^{n}\left(\right.$ or $\left.\mathbb{P}^{n}\right)$ where the closed sets are defined to the be algebraic sets. And a quasi-affine (or -projective) variety is an open subset of an affine (respectively projective) variety.

[^0]: ${ }^{1}$ Apparently.

